
Real-time Rendering of
Burning Solid Objects in Video Games

Dhanyu Amarasinghe
Ian Parberry

Dept. of Computer Science & Engineering
University of North Texas
Denton, Texas 76203–5017

Email: {DhanyuAmarasinghe | ian}@unt.edu

Abstract—Objects in 3D games are typically shell models, a
polygon mesh representing the shell or skin of the object. While
emulation of the behaviour of shell models under combustion is
sufficient for many game applications and is fairly well studied,
solid objects do in fact burn rather differently than shell objects.
We show how to manipulate shell models so that they appear to
burn as solid models. Since our burning objects will be only a
small part of a video game, computation speed is of the essence.
We demonstrate that our method uses only a fraction of the
computational power available by implementing the computation
on a modest GPU using CUDA.

Index Terms—Procedural content generation, video game,
thermal response, combustion, deformation, polygon mesh.

I. INTRODUCTION

Many cutting edge console and PC games compete to attract
seasoned players by increasing realism over and above what
they are accustomed to in other games. Replicating the details
of a physical process such as fire can readily draw the player
into willing suspension of disbelief.

Fig. 1. Shell model deformation (left) vs solid model deformation (right).

The typical object in a 3D video game is represented by a
polygon mesh in the shape of its surface, which we will call a
shell model. The problem of applying shape changes to a shell
model by emulating solid object properties without overload-
ing the available computational resources is a challenging one.
We propose to tackle the emulation of solid object deformation
and consumption under combustion. Solid objects are expected

to burn much differently than shells. Aside from the obvious
difference of being able to see the inside of a burned-out shell
(Figure 1, left), a solid object will melt and deform under heat
in a different way (Figure 1, right).

The structure of the remainder of this paper is as follows.
In Section II we describe some prior work. In Section III
we describe our representation framework for the internal
deformation and the key features of such a strategy. Section IV
describes our approach to implementing the structural defor-
mation framework. Section V contains a few notes on our
optimization techniques and results. Section VI contains the
conclusion and further work.

II. PREVIOUS WORK

This paper extends our previous work on the emulation of
burning objects in video games. Amarasinghe and Parberry [1]
laid down the foundation of our approach and demonstrated
the ability to realistically burn in real time on a relatively
slow GPU a high-polygon count shell model of a toy satellite.
Amarasinghe and Parberry [2] extended this work to models
with a very low polygon count by judicious use of procedural
triangulation in the areas that are on fire, and demonstrated
the ability to realistically burn on the same GPU a 12-triangle
shell model of a door. This approach also lent itself easily to
dynamic Level of Detail rendering.

Model deformation is a popular topic in the Computer
Graphics community. We single out the following papers as
relevant and significant, but without exception they strive
for realism at the cost of performance. Although they are
more realistic than our approach, their methods are not real-
time and are therefore more useful for offline applications
such as motion pictures than for video games. Melek and
Keyser [3], [4] discuss techniques that were used in selected
object deformation due to fire. Terzopoulost and Platt [5]
introduce the theory of elasticity to describe deformable
materials such as rubber, cloth, paper, and flexible metals.
Sederberg and Parry [6] introduce a technique for deforming
solid geometric models in a free-form manner. Tadmor and
Phillips [7] and Nealen et al. [8] use finite element methods
to deform complex geometries. Toivanen [9] discusses free
deformation of meshes.

Proceedings of the 18th International Conference on Computer Games, pp. 139-143, Louisville, Kentucky, USA, 2013.



Fig. 2. The combustion of a solid model and the spread of procedural fire.

Finally, Rasmussen and Fedkiwr [10], [11] introduce high
quality flame simulations that we use in our experiments, but
they do not address object deformation.

III. INTERNAL DEFORMATION

According to Melek and Keyser [3], when an object burns
there are assorted interior chemical reactions at various stages
that lead its properties to change in a process called pyrolysis.
Volumetric expansion of heated material is caused by weaken-
ing bonds at the molecular level. Internal forces are disturbed
by the effect of heat on unstable bond structure, ultimately
leading to the consumption of material. This causes changes in
the shape of the object’s affected areas. We begin by creating
a simplified model of heat spread.

A. The Heat Boundary

The temperature of a burning object changes over both
time and space. The increase in temperature generated by fire
changes the mechanical behavior of the object. Significant
thermal response occurs due to the thermal conductivity of
the material. Absence of thermal equilibrium of the heat
flux generates a heat boundary. As in Amarasinghe and
Parberry [1], we approximate the expansion of the heat bound-
ary by calculating it around a fixed solitary point using the
following function:

R2 = | sin(πΘ/∆r) + sin(πΘ) +

ψ((x− x0)2 + (y − y0)2 + (z − z0)2)|,

where R = r + ∆r indicates that the radius r is incremented
by ∆r in each ∆t time period. The angle Θ is a random
value in order to make the expanding heat boundary irregular
in shape. The location of the heat source is (x0, y0, z0). As we
discussed earlier in [1], the heat index can be approximated
by a constant that depends on the size of the coarse triangles
of the model.

In this paper we address the combustion of solid models
with an arbitrary number of polygons. If the targeted triangle
is considerably larger than the rest of the triangles, we can
always apply the subdivision techniques from Amarasinghe
and Parberry [2]. Thus, the designer can maintain a fixed heat
index value that is suitable for the model and maintain the
subdivision level accordingly.

The above boundary function creates a roughly spherical
but irregular heat boundary around the heat source. In the

real world, heat sources reproduce throughout the burning
object as flames distribute over time. Figure 3 illustrates the
similarity of the approximated heat boundary expansion for
single versus multiple heat sources. The multiple source heat
boundary expands throughout the model with behavior similar
to our single heat source approximation implemented using the
above function. Because determination of the authentic heat
boundary expansion is computationally expensive, we believe
that the use of a single source heat boundary expansion is a
viable alternative for use in video games.

Fig. 3. Heat boundary for single vs. multiple heat sources with different
levels of boundary.

As shown in Figure 3, we divide the heat boundary into
four different areas. The Virtual Heat Boundary is spread
through the model prior to the actual heat boundary expansion
and is used to amortize essential calculations that could
apply to the qualified triangles before the deformation process
begins. The other three boundaries are those introduced in
Amarasinghe and Parberry [1]; the Initial Heat Boundary in
which combustion is actively taking place and vertices are
preparing to be deformed, the Combustion Ready Boundary
where ignition starts, and the Deform Boundary consisting of
material that has been burned.

B. The Deformation Process

Surface removal as practiced in our prior paper Amaras-
inghe and Parberry [1] is less useful in solid models than

Proceedings of the 18th International Conference on Computer Games, pp. 139-143, Louisville, Kentucky, USA, 2013.



in shell models because the consumption of material in a
solid model simply reveals more material just underneath it.
Consequently solid models have more triangles to deform than
shell models, and these need to be managed efficiently and ef-
fectively. In order to achieve this we categorize model triangles
into three major types as shown in Figure 4. Those are called
Boundary Qualified Triangles, Combustion Qualified Trian-
gles, and Deforming Triangles. Boundary Qualified Triangles
are the triangles located inside the Virtual Heat Boundary.
These can be completely or partially contained within the heat
boundary, depending on the size of the triangle. If the latter
is the case, triangle subdivision must take place.Combustion
Qualified Triangles are the ones that are ready to take part in
the first round of deformation.

Fig. 4. Categorized Model Triangles

C. Inward Contraction Displacement

In shell models the heat-induced deformation of an object
is achieved by displacement of the vertices of the model mesh
(see Amarasinghe and Parberry [1]), where the position of each
vertex depends on given properties such as vertex distance,
gravitational force, and material index, and the internal forces
work on the triangle pointing towards the direction of its
vertices. However, when the model represents a solid object
we must also apply inward contraction forces to the vertices.

In burning objects, the extending heat waves weaken the
bond strength between adjacent molecules. This weakening
effect falls off as a function of the distance from the heat
source. As a result, surface molecules move towards the
stronger bonds in order to find stable equilibrium between
the acting forces. This results in contraction of the burning
area of the object. Melek and Keyser [3] also noted that due
to multiple internal chemical reactions at various stages of
the combustion process, material may change state from solid
to liquid and from liquid to gas. Both these cause reduction
of the mass in affected areas of the burning object. In most
cases this will cause an inward concave shape in the consumed
area. To illustrate this phenomenon in a simulation we have
applied what we call the Inward Contraction Displacement
Technique to calculate the inward movement of the vertices
of the Deforming Triangle. The idea of this technique is to

identify for each triangle a virtual point covered by the affected
polygonal boundary in distance (see Figure 5) and use this to
calculate the the local inward displacement.

First we must identify the inward direction of the Combus-
tion Qualified Triangle or the Deforming Triangle. Secondly,
the distance of the virtual point must be proportional to the size
of the qualified triangle. However, calculating random virtual
points to meet the necessary requirements on continuously
deforming polygons is not an efficient solution. Therefore, our
best approach to succeed this task is to employ the face normal
of the object and calculate the inverse directional coordinates.
To maintain the proportional distance between the virtual point
and the triangle surface, we factor the normal vector coordinate
by the length of either side of the triangle (d1 or d2 in
Figure 5). That is,

(Xin, Yin, Zin) = −D · (Xfn, Yfn, Zfn),

where (Xin, Yin, Zin) is the inward contraction point and
(Xfn, Yfn, Zfn) is the face normal of the targeted polygon.
The distance of the either side of a polygon is represented by
D. Deforming Triangles are the triangles that actually perform-
ing the deformation of the burning object. The displacement
of its vertices is addressed in the following subsection.

D. Vertex displacement

Suppose B is a vertex to be displaced in triangle ABC,
where A = (xa, ya, za), B = (xb, yb, zb), and C =
(xc, yc, zc). B is to be displaced to (Xd, Yd, Zd), as follows:

Xd = (x1x2(ya − yc) + x1xa(yc − y2)

+xcx2(y1 − ya) + xaxc(y2 − y1))/

((xa − x2)(yc − y1)− (xc − x1)(ya − y2))

Yd = (y1y2(xa − xc) + y1ya(xc − x2)

+ycy2(x1 − xa) + yayc(x2 − x1))/

((ya − y2)(xc − x1)− (yc − y1)(xa − x2))

Zd = (z1z2(ya − yc) + z1za(yc − y2)

+zcz2(y1 − ya) + zazc(y2 − y1))/

((za − z2)(yc − y1)− (zc − z1)(ya − y2))

where

(x1, y1, z1) = µC + (d1 − µ)B

(x2, y2, z2) = λA+ (d2 − λ)B.

Figure 5 illustrates the coordinates and parameters used in
these equations. The values λ and µ are the displacement
amounts of each triangle due to the effect of heat on the vertex.
The lengths of BC and BA are d1 and d2 respectively. The
points (x1, y1, z1) and (x2, y2, z2) are µ and λ fraction of
the length along the edges (respectively BC and BA) of the
triangle. The values µ and λ are displacement parameters for
vertex B. They measure the amount that the bond between B
and its neighboring vertices is changed by temperature.

We use a displacement adjustment parameter β to allow for
the variation in triangle size from one model to another. The

Proceedings of the 18th International Conference on Computer Games, pp. 139-143, Louisville, Kentucky, USA, 2013.



Fig. 5. The deformation coordinates of a single triangle.

designer must set this value as part of the design process. ρ
denotes a material density index. When both vertices of an
edge are inside the heat boundary, bond strength is weaker
by a factor of φ than when one vertex is outside of the heat
boundary.
λ is then defined to be βρL/d2 if A is outside the heat

boundary, and φβρL/d2 otherwise (µ is defined similarly,
replacing d2 with d1), where L is the flammability of the
vertex, defined as follows. Burning objects are consumed by
combustion, and combustion subsides when there is nothing
left to consume. We set a flammability value L at each
vertex. This counter decreases each time vertex displacement is
processed. After the flammability index reaches zero, there are
no consumable resources left at the vertex. The designer sets
the initial flammability index for each vertex. This gives the
designer the ability to vary flammability from place to place
in the model, thus mimicking the effect of having the model
constructed from different physical materials such as wood
or metal. The final displacement values of X,Y, Z are X =
λb cos(Θ) sin(α), Y = λb sin(Θ), Z = λb cos(Θ) cos(α),
where

α = tan−1 (Xd −Xin/Zd − Zin)

Θ = tan−1 (Ydcosα/Zd − Zin)

λb is either λ or µ depending on the corresponding distance
D is d1 or d2.

Among all of the external forces, gravity plays a significant
part in almost every physical simulation. Let ε be a constant
that represents the amount that the model melts due to heat,
and ~g be the gravity vector. Then the effect of gravity is
computed as follows: Y = Y − ε~g.

IV. STRUCTURAL DEFORMATION

As we described in Amarasinghe Parberry [1], the structural
changes in a burning object are the result of various factors

including the expansion and the weakening of the internal
bonds, and the relative weights of cantilevered parts of the
object. The precise calculation of these complex processes is
costly. Therefore, we introduced the block sampling method
as a computationally less expensive solution to maintaining
realism while performing systematic structural change. The
block sampling method divides the object into uniform blocks
and treats each block as a single unit, propagating changes to
neighboring blocks. The following describes the modifications
needed to adapt it to solid objects.

This method starts by constructing an axially aligned bound-
ing box around the solid object, and then decomposing it
into a grid of smaller axially aligned bounding boxes which
we shall call blocks. Define the weight of a block to be the
number of vertices inside it. We will use the block weight as
an approximation of flammability, under the assumption that
a block with more vertices contains more material, and thus
will produce more flames. The difference with burning solids
is that there are no surface removal techniques associated with
burn level adjustments as in Amarasinghe and Parberry [1].
Furthermore, the weight changes of each block are not sig-
nificant enough without the effect of level adjustment. As a
solution for these concerns, we maintain a counter to monitor
the time of combustion per each block. Weights of the blocks
are decided according to the number of vertices factored with
the counter. The empty ones of weight zero are discarded.

The parameters of each block contain the amount of the
midpoint rotation, the number of vertices, the list of connected
neighboring blocks, and the counter. Since all the blocks are
interconnected, a change to one block may affect all of the
blocks in the model. To maintain the computation complexity
in low level, we apply changes to only immediate neighboring
blocks, and rely on subsequent iterations to propagate the
effects further. The change of the weight in each block results
in a slight rotation of the box around its midpoint. The
direction of the rotation will be determined by the placement
of the displaced vertex compared to the midpoint of the box.
Stability will change due to the rotation of the immediate
neighboring boxes.

We keep track of the orientation of each block as a triple
of Euler angles. The change in roll angle R (pitch and yaw
are similar) for a block is: R = γρπ/NM , where γ is a
scaling factor chosen by the designer, ρ is a measure of the
material density of the model in that block, N is the number
of vertices in the block, and M is the current number of
nonempty neighboring blocks.

V. RESULTS AND OPTIMIZATION

We have implemented automatic level of detail (abbrevi-
ated LOD) rendering into our simulation using techniques
presented earlier in Amarasinghe and Parberry [2]. Figure 6
illustrates our LOD algorithm applied to the burning of a solid
block of wood. The images shown in this paper are from a
CUDA implementation of our algorithm applied to different
models. Since there is no strict time line for the combustion of

Proceedings of the 18th International Conference on Computer Games, pp. 139-143, Louisville, Kentucky, USA, 2013.



Fig. 6. Level of Detail (LOD)

the model, we can always control complexity of the simulation
by limiting the number of deforming triangles at a time.

Optimization is possible since our deformation is always
applied mostly to the affected areas of the object. The
continuous deformation of given polygon can be controlled
by parameter settings such as the flammability value L. In
particular, the shape and size of a Deforming Triangle can be
drastically changed. Overly-exaggerated deformation reduces
realism. In order to maintain efficient simulation without heavy
resource usage, once a Deforming Triangle’s flammability
value L exceeds some limit we remove the polygon from the
group of Deforming Triangles and add more from the set of
Combustion Qualified Triangles into the group. By following
this practice we gained more control over the simulation with
better performance while maintaining realism.

We used approximately 2000 fire particles and 500 smoke
particles to demonstrate the visual effects. Our algorithm was
implemented in CUDA on relatively modest hardware; An
Intel R©CoreTM2 Duo CPU P8400 @ 2.26GHz processor with
an NVidia GeForce 9800 GTS graphics card. We were able
to maintain 60fps frame rate up to 45k triangle model with
balanced settings (quality vs. performance) in the graphic
card. This performance will of course be much better on
the current generation of graphics hardware, and thus able
to run in parallel with other rendering tasks and game-related
computation.

VI. CONCLUSION

We have described a method for the real-time deformation
and consumption of a solid model during combustion by
procedurally generated fire, extending our previous work on
shell models [1], [2]. We were able to successfully perform our
simulation on models of various mesh resolution and topology
on less than cutting-edge hardware. We believe that our
approach maintains a reasonable amount of realism sufficient
to trigger willing suspension of disbelief in the game player.
Our simulations perform well on various models ranging from
a dozen to hundreds of thousands of triangles.

Open problems remaining include the efficient and effective
modeling of melting objects such as candles.

REFERENCES

[1] D. Amarasinghe and I. Parberry, “Towards fast, believable real-time
rendering of burning objects in video games,” in Proc. 6th Annual
Internat. Conf. on the Foundations of Digital Games, 2011, pp. 256–258.

[2] ——, “Fast, believable real-time rendering of burning low-polygon
objects in video games,” in Proc. 6th Internat. North American Conf. on
Intelligent Games and Simulation (GAMEON-NA). EUROSIS, 2011,
pp. 21–26.

[3] Z. Melek and J. Keyser, “An interactive simulation framework for
burning objects,” Dept. of Computer Science, Texas A&M University,
Tech. Rep. 2005-03-1, 2005.

[4] ——, “Driving object deformations from internal physical processes,”
in Proc. 2007 ACM Symp. on Solid and Physical Modeling. New York,
NY, USA: ACM Press, 2007, pp. 51–59.

[5] D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer, “Elastically de-
formable models,” ACM SIGGRAPH Computer Graphics Quarterly,
vol. 21, no. 4, pp. 205–214, 1987.

[6] T. Sederberg and S. Parry, “Free-form deformation of solid geometric
models,” ACM SIGGRAPH Computer Graphics Quarterly, vol. 20, no. 4,
pp. 151–160, 1986.

[7] E. Tadmor, R. Phillips, and M. Ortiz, “Mixed atomistic and continuum
models of deformation in solids,” Langmuir, vol. 12, no. 19, pp. 4529–
4534, 1996.

[8] A. Nealen, M. Müller, R. Keiser, E. Boxerman, and M. Carlson,
“Physically based deformable models in computer graphics,” Computer
Graphics Forum, vol. 25, no. 4, pp. 809–836, 2006.

[9] J. Simo and F. Armero, “Geometrically non-linear enhanced strain
mixed methods and the method of incompatible modes,” Internat. J.
for Numerical Methods in Engineering, vol. 33, no. 7, pp. 1413–1449,
1992.

[10] D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, “Physically based modeling
and animation of fire,” in Proc. 29th Annual Conf. on Computer
Graphics and Interactive Techniques. New York, NY, USA: ACM
Press, 2002, pp. 721–728.

[11] N. Rasmussen, D. Nguyen, W. Geiger, and R. Fedkiw, “Smoke sim-
ulation for large scale phenomena,” ACM Transactions on Graphics,
vol. 22, no. 3, pp. 703–707, 2003.

DHANYU AMARASINGHE

Dhanyu Amarasinghe is a PhD can-
didate in the Department of Com-
puter Science and Engineering at the
University of North Texas. His re-
search topic is the real-time proce-
dural consumption and distortion of
3D game objects under combustion.
His PhD adviser is Ian Parberry.

IAN PARBERRY

Ian Parberry is a Professor in the
Department of Computer Science and
Engineering at the University of
North Texas. With over 3 decades of
experience in research and education,
he is a pioneer of game programming
in academia. He is the author of seven
books, four of them on game pro-
gramming, and more than 70 articles
on a wide range of computing subjects including algorithms,
complexity theory, parallel computing, neural networks,
and game programming. He is on the Editorial Boards of
the Journal of Computer Game Design and Development,
IEEE Transactions On Computational Intelligence and AI In
Games, and serves on the Society for the Advancement of
the Science of Digital Games, which organizes the Annual
Foundations of Digital Games conference.

Proceedings of the 18th International Conference on Computer Games, pp. 139-143, Louisville, Kentucky, USA, 2013.




